Все про медицину

Роділи


За принципом реєстрації звуків - це односторонній стрижневий п'єзокерамічний приймач звукового тиску, а по використанню його при аускультації, контактний мікрофон. Розроблені та досліджені дві модифікації мікрофона: на основі п'єзокераміки ЦТС-19 та п'єзокристалічного матеріалу ХГС-2. При аускультації звуків дихання, передня накладка мікрофона притискається до тіла пацієнта. Звуки дихання через накладку, передаються на чутливий елемент мікрофона, де перетворюються в змінну електричну напругу.

Розрахункова схема п'єзокерамічного мікрофона наведена на рис.1.

Метод фізичного градуювання мікрофонів по тиску, заснований на фізичній аксіомі: силовий вплив коливань поверхні тіла людини на мембрану мікрофона еквівалентно впливу на неї вібрацій на фіксованій частоті.

Градуювання реалізовано за допомогою комплекту віброакустичної апаратури фірми "Брюль та Къер" у діапазоні частот 20-6000 Гц.

Встановлено, що АЧХ мікрофонів лінійна в діапазоні частот 25-6400 Гц, чутливість першого г=2,5·10-3 В/Па, другого г = 5,2·10-3 В/Па. Відмінність чутливості обумовлена питомими параметрами п'єзоелектриків. Резонанси мікрофонів перебувають на частотах 167,3 кГц та 63,2 кГц, відповідно. Розрахунково та експериментально визначена чутливість, та частоти резонансів близькі. Загальна ймовірна похибка градуювання мікрофонів - 1,14 дБ.

Апробація контактних мікрофонів виконана в контрольованих умовах при вимірі звуків серця, звуків дихання та звуків зовнішнього фона, перевипромінених тілом. Звуки серця вимірялися в лівій області грудної клітки

(т.2Л). Звуки дихання - у правій підключичній області (т.2П). Звуки перевипромінювані тілом реєструвалися на стегні пацієнта. Виявлено, що звуки спокійного та форсованого дихання, істотно перевищують звуки серця та звуки перевипромінювані тілом. Отримані результати корелюють із подібними результатами інших дослідників (S. Kraman, G. Wodіcka, H. Pasterkamp, 1995).

Виявлений ефект підвищення рівня звуків дихання зі збільшенням питомого тиску на контактну поверхню мікрофона, рис.2. На нашу думку, це викликано ущільненням біотканин, що забезпечує кращі умови переходу звуку.

Запропованований та досліджений перетворювач, у якого чутливим елементом є гідрофон, розташований у жорсткому корпусі заповненому рідиною, із хвильовим опором близьким до хвильового опору біотканин. Контактна поверхня перетворювача виконана з тонкої еластичної гуми. В цьому перетворювачі реалізовано перехід звуку (біотканина - рідина - гідрофон). Встановлено, що АЧХ перетворювача лінійна на частотах 20 - 3600 Гц, а чутливість складає 18 мВ/Па. Контактний мікрофон та гідрофон запатентовані.

Для використання в пристроях електронної аускультації нами розроблено та досліджено спеціальний легкий, високочутливий акселерометр АД-16, гнучко-деформаційного типу, з біморфними консольними п'єзоелементами.

Механічний імпеданс акселерометра істотно нижче механічного імпедансу поверхні біотканин, на яких здійснюється реєстрація звуків дихання.

АЧХ акселерометра, у площині перпендикулярної до його основи, лінійна, у діапазоні частот 20-2000 Гц, а чутливість дорівнює 15±5 мВс2/м. Резонанс перебуває на частоті 2400 Гц.

У четвертому підрозділі наведено порівняння ефективності контактного мікрофона та акселерометра, за критерієм перешкодозахищеності (сигнал/перешкода). Дослідження були виконані при синхронній реєстрації перетворювачами звуків вдиху пацієнтів (т.2П - сигнал) і звуків на стегні (перешкода). Контактний мікрофон більш ефективний акселерометра в діапазоні досліджуваних частот. Ефективність сенсора, на основі акселерометра "Sіemens ЕМТ 25С", який широко використовується закордонними дослідниками, значно нижче (рис.3).

Сторінки: 1 2 3 4 5 

© Copyright 2010 www.web-of-med.ru. All Rights Reserved